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Abstract

In this paper, a probabilistic approach is introduced and used to find the optimal values assigned to the uncertain

parameters of a room acoustic model, which is used for the reconstruction of the interior sound pressure distribution. The

acoustic model selected here to examine the capacity of the probabilistic approach is a rectangular room with two air

leakages that is subject to an external uniform noise. The model is set up using the modal analysis method. The values of

the uncertain parameters of the model are identified using the time domain sound pressure responses at selected

measurement points. In the simulation results, the comparisons between the proposed approach and the typical least error

square method show that the former clearly assigns optimal values to the uncertain model parameters for the best

prediction, while the latter generates a set of values for which the prediction errors are very similar and close to the

minimum (in other words, it is difficult to identify the optimal values using the least error square method). Moreover, the

optimal values for the uncertain parameters can be found individually, unlike those from the least error square method. It

is also found that the measurement points should not be located at the nodal points of the dominant acoustic modes;

otherwise, the identification process becomes unidentifiable. For cases in which large modal truncation errors (or modeling

errors) exist, the identification process also becomes unidentifiable.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In practice, the sound pressure distribution within an enclosed space is important for interior acoustic
design. To obtain the continuous sound pressure distribution without many measurement points, a model
must be set up and values assigned to the model parameters. Hence, the assigned values are the key factors in
achieving accurate predictions. This paper proposes the use of a probabilistic approach to calculating the
optimal values assigned to the model parameters by utilizing a few measurement points.

Many researchers (e.g. Pretlove [1], Dowell et al. [2], and Narayanan and Shanbhag [3]) have theoretically
developed sound pressure models within rectangular enclosed spaces. Most of them have adopted classical
approaches to solving the wave equation that is associated with the boundary conditions to obtain the sound
pressure distribution function. Jackson [4], Oldham and Hillarby [5], and Pan et al. [6] studied similar
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problems experimentally and theoretically. They found that the values assigned to the modal parameters were
not accurate due to uncertain boundary conditions or damping factor or other parameters, which resulted in
poor prediction at low frequencies. This is also a common problem in structural modeling, but it can be solved
using system identification methods to obtain the optimal model parameters for the best prediction. This
paper introduces a framework for probabilistic system identification and incorporates it into the acoustic
model to solve the uncertain parameters.

Few research works have been directly related to the problem in this paper. Some previous works on the
identification of an acoustic model from measured responses are as follows. Mckelvey et al. [7] proposed the
subspace system identification method to obtain the acoustic model of a regular duct using the measured
responses. Henry and Clark [8] and Clark and Fuller [9] set up the transfer functions for particular inputs and
outputs in their acoustic models and used them in the control design schemes. The model could only predict
the responses at the output locations. These identification processes were mainly used for active control, which
is different from the main theme of this paper (which can predict the response of any location, once the
uncertain parameters are identified). Other research groups, such as those of Choi and Kim [10], Kim and
Nelson [11], Williams [12], Maynard and Veronesi [13] developed various methodologies to reconstruct the
sound pressures that are radiated from sources under a free field condition or identify their numbers and
locations. Unlike the focuses in these studies, however, any uncertain parameters in the room model of this
paper can be identified using the proposed probabilistic method. The acoustic model input with the identified
parameters is used for sound pressure prediction.

System identification is a ‘‘non-unique’’ inverse problem with uncertainties in the identified results. To
handle the ‘‘non-uniqueness’’ problem and properly describe the ‘‘uncertainties’’, probabilistic methods
should be employed. Instead of pinpointing one solution of the model parameters, probabilistic system
identification methods focus on the calculation of the probability density function (PDF) for the uncertain
parameters. One outstanding advantage of the Bayesian statistical identification framework is that engineering
judgments can be easily incorporated into the analysis to reduce the uncertainties of the identification results.
Beck [14] discovered the PDF of the uncertain model parameters in the measure-of-fit function peak at some
optimal points, provided that the number of available data points was very large and the modeling and
measurement errors were relatively small. Based on asymptotic approximation [15,16], Beck and Katafygiotis
proposed to approximate this PDF by a weighted sum of Gaussian distributions that was centered at these
optimal points. The task of finding all global maxima of the measure-of-fit function is non-trivial, and can be
effectively handled by the algorithm presented in Ref. [16]. This development was a milestone in the Bayesian
system identification framework. It is one of the objectives of this paper to extend this framework and apply it
in updating acoustic model parameters.

2. Theory

2.1. Acoustic model

The model of a rectangular enclosed space with air leakages Mp, is presented in this sub-section. In Fig. 1,
the acoustic velocity potential within the rectangular room subject to a steady-state uniform distributed sound
pressure is given by the following homogeneous wave equation [17]:

r2f�
1

c2
q2f
qt2
¼ 0, (1)

where f is the velocity potential function and c is the speed of sound.
The air particle velocities in the x, y, and z directions and pressures within the air cavity are given by

qf=qx; qf=qy; qf=qz; and � rðqf=qtÞ, respectively, where r is the air density.
The boundary conditions of the rectangular cavity to be satisfied are

qf
qx

����
x¼0

¼
qf
qx

����
x¼Lx

¼ 0;
qf
qy

����
y¼0

¼
qf
qy

����
y¼Ly

¼ 0, (2a,b)
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qf
qz

����
z¼0

¼ 0;
qf
@z

����
z¼�Lz

¼ vðx; y; tÞ, (2c,d)

where Lx, Ly, and Lz are the dimensions of the room, and v(x,y,t) is the velocity at z ¼ �Lz.
fo(t) ¼ foe

iot is the external steady-state sound pressure. v(x,y,t) can be expressed as v(x,y)eiot, i is the
complex number

ffiffiffiffiffiffiffi
�1
p

, and o is the frequency in radian/s. In Fig. 1, it is assumed that the two air leakages are
located at x1pxpx1 þ L0x1

, y1pypy1 þ L0y1 and x2pxpx2 þ L0x1
, y2pypy2 þ L0y1 , respectively. L0x1

, L0x2
, L0y1 ,

and L0y2 are the widths and lengths of the air leakages. The velocity profiles at the air leakages are assumed to
be double the sine function. Thus, the particle velocity profile at z ¼ �Lz is given by

vðx; yÞ ¼

ioA1 sin pðx�x1Þ

L0x1

� �
sin pðy�y1Þ

L0y1

� �
for air leakage 1;

ioA2 sin
pðx�x2Þ

L0x2

� �
sin pðy�y2Þ

L0y2

� �
for air leakage 2;

0 for the rigid wall;

8>>><
>>>:

(3)

where A1 and A2 are the air particle displacement amplitudes at the leakages.
By applying the boundary conditions in Eq. (2a–d), the solution of Eq. (1) can be expressed [1,17–19] as

fðx; y; z; tÞ ¼ ioeiot
XN

n¼0

XM
m¼0

ðA1a1;nm þ A2a2;nmÞ coshðmnmzÞ

mnm sinhðmnmLzÞ
cos

npx

Lx

� �
cos

mpy

Ly

� �
, (4)

where mnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

nm � o2
p

=c, o2
nm ¼ c2p2½ðn=LxÞ

2
þ ðm=LyÞ

2
�, for a damped system it is assumed that

mnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

nm þ xoonm � o2
p

=c, x is the damping ratio, N and M are the numbers of the acoustic modes

used in the x and y directions, respectively, a1,nm and a2,nm are the modal coupling coefficients depending on
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Fig. 1. Theoretical model of a room with two air leakages.
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the locations and sizes of the air leakages and the corresponding acoustic modes, as given below:

a1;nm ¼

R
S1
sin

pðx� x1Þ

L0x1

� �
sin

pðy� y1Þ

L0y1

� �
cos

npx

Lx

� �
cos

mpy

Ly

� �
dS

R
S1
cos

npx

Lx

� �2

cos
mpy

Ly

� �2

dS

, (5a)

a2;nm ¼

R
S2
sin

pðx� x2Þ

L0x2

� �
sin

pðy� y2Þ

L0y2

� �
cos

npx

Lx

� �
cos

mpy

Ly

� �
dS

R
S2
cos

npx

Lx

� �2

cos
mpy

Ly

� �2

dS

, (5b)

where S1 ¼ L0x1
L0y1 and S2 ¼ L0x2

L0y2 are the leakage areas.

The internal sound pressure force is equal to �rðqf=qtÞ, and is given by

f ðx; y;o; tÞ ¼ eiotHðx; y;�Lz;oÞ, (6)

where

Hðx; y; z;oÞ ¼ ro2
XN

n¼0

XM
m¼0

ðA1a1;nm þ A2a2;nmÞcoshðmnmzÞ

mnm sinhðmnmLzÞ
cos

npx

Lx

� �
cos

mpy

Ly

� �
.

Consider the resulting differential equation for the average displacements at the air leakages [13]:

m
d2w̄1

dt2
þ R1

dw̄1

dt
¼ f̄ 1ðtÞ � f oðtÞ, (7a)

m
d2w̄2

dt2
þ R2

dw̄2

dt
¼ f̄ 2ðtÞ � f oðtÞ, (7b)

where m ¼ rh, R1 ¼ rck2S1ð2pÞ, and R2 ¼ rck2S2ð2pÞ are the equivalent air mass and sound radiation
impedance at the leakages, respectively [20], h is the wall thickness, k ¼ o=c is the wavenumber, and w̄1, w̄2, f̄ 1,
and f̄ 2 are the average air particle displacement and internal sound pressure forces, which are given as

w̄1ðtÞ ¼ A1e
iot

R
S1
sinðpðx� x1Þ=L0x1

Þ sinðpðy� y1Þ=L0y1 ÞdS

S1
¼ A1e

iot 2

p

� �2

, (8a)

f̄ 1 ¼ ro2eiot
XN

n¼0

XM
m¼0

ðA1a1;nm þ A2a2;nmÞ

mnm tanhðmnmLzÞ
b1;nm. (8b)

Similarly,

w̄2ðtÞ ¼ A2e
iot 2

p

� �2

, (9a)

f̄ 2 ¼ ro2eiot
XN

n¼0

XM
m¼0

ðA1a1;nm þ A2a2;nmÞ

mnm tanhðmnmLzÞ
b2;nm, (9b)

where

b1;nm ¼

R
S1
cos

npx

Lx

� �
cos

mpy

Ly

� �
dS

S1
and b2;nm ¼

R
S1
cos

npx

Lx

� �
cos

mpy

Ly

� �
dS

S2
.

By substituting Eqs. (8a), (8b, (9a) and (9b) into Eqs. (7a) and (7b), the displacement amplitudes A1

and A2 can be obtained. The sound pressure distribution in dB scale for all frequency components of the
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excitation is defined by

SPLðx; y; zÞ ¼ 10 log

Z ou

ol

Hðx; y; z;oÞ
�� ��2 do� �

, (10)

where ol and ou are the lower and upper cutoff frequencies of the random excitation, respectively. The sound
pressure in the time domain can be derived using the inverse Fourier transform method.

2.2. Proposed probabilistic approach

The probabilistic identification framework [15,16,21,22], which was originally employed in structural model
updating and health monitoring, is extended in this paper for the identification of the uncertain parameters of
an acoustic model to reconstruct the interior sound pressure of the system. Unlike the deterministic approach,
the probabilistic approach aims to calculate the posterior (updated) PDF of the uncertain parameters for a
given set of measurement data. In this study, we define h ¼ {aTs}T as the uncertain parameter vector to be
updated, where a contains the leakage locations (x1, y1) and (x2, y2) and the corresponding leakage sizes S1

and S2. s represents the prediction error which is defined as the difference between the measured output and
input. Herein, the assumption is made that the prediction error is both spatially and temporally independent
and normally distributed. The measurement data DN includes the interior sound pressure and external sound
pressure, which are the output and input data in the probabilistic identification model. Based on the Bayes’
Theorem, the posterior PDF of h for a given set of measured sound pressure data DN can be expressed by

p hjDN ;MPð Þ ¼
p DN jh;MPð Þp hjMPð Þ

p DN jMPð Þ
, (11)

where p hjMPð Þ ¼ pðhÞ is the prior PDF of h, which allows judgment about the relative plausibility of the
values of h to be considered. Mp represents the classical acoustic model developed in Section 2.1. The PDF of
obtaining the set of measured sound pressure data DN for a given MP can be expressed as

p DN jMPð Þ ¼

Z
SðhÞ

p DN jh;MPð Þp hjMPð Þdh ¼ c�1. (12)

Therefore, Eq. (11) can be expressed as

p hjDN ;MPð Þ ¼ cp DN jh;MPð ÞpðhÞ, (13)

where c is a normalizing constant. The most important term in Eq. (13) is p DN jh;MPð Þ, which is the
contribution of the measured sound pressure data in the posterior PDF, and is given by

p DN jh;MPð Þ ¼
1ffiffiffiffiffiffi

2p
p

s
	 
NNo

exp �
1

2s2
XN

n¼1

q̂ðnÞ � qðn; aÞ
�� ��2" #

, (14a)

where NO is the number of measurement stations, N the number of measured time steps at each measurement
station, q̂ðnÞ the vector of measured sound pressures at the nth time step, q(n;a) the vector of calculated sound
pressures based on the model MP for a given set of uncertain parameters a, and �k k is the usual Euclidean
norm of a vector.

The uncertainty in the acoustic model parameters is quantified by the marginal distribution of a. The
posterior marginal PDF of the acoustic parameters a can be obtained from Eq. (13) by integrating over s as
follows:

p ajDN ;MPð Þ ¼

Z 1
0

cp DN ja; s;MPð Þpða; sÞds. (14b)

Assuming that the prior distribution pða; sÞ is a slowly varying function of s and that the number N of
measured data is sufficiently large, it can be shown that the integrand in the right hand side of Eq. (14b)
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generally peaks at the optimal values of the J(a) function as defined below:

JðaÞ ¼
1

NNO

XN

n¼1

q̂ðnÞ � qðn; aÞ
�� ��2 ¼ ŝ2ðaÞ. (14c)

More details about Eq. (14c) are shown in Appendix A. This positive definite measure-of-fit function
between the measured and modeled sound pressures J(a) is equal to ŝ2ðaÞ, which represents the optimal
variance in the prediction error model. The integral in Eq. (14b) can then be calculated using an asymptotic
approximation that is available for this type of integral [24], resulting in

p ajDN ;MPð Þ ¼ c1JðaÞ
�NJpða; ŝðaÞÞ. (15a)

For non-informative (uniform) prior distribution p,

p ajDN ;MPð Þ ¼ c1JðaÞ
�NJ , (15b)

where c1 is a normalizing constant so that the integration of the term on the right-hand side of Eq. (15) over
the pre-defined domain is equal to unity, and NJ ¼ ðNNO � 1Þ=2; N and NO are the numbers of measured time
steps and measurement locations, respectively; J(a) and ŝðaÞ are defined in Eq. (14b); p(a,s) is the prior PDF
of the uncertain parameters. The posterior PDF for particular uncertain parameters a* is given by

p a�jDN ;MPð Þ ¼

Z
Sða0Þ

p ajDN ;MPð Þda0, (16)

where a0 is the uncertain parameter vector excluding a*.
The posterior PDF in Eq. (15) gives the plausibility of the acoustic model parameter values over the domain

S(a) after updating. In practice, the exponent NJ in Eq. (15a) is a large number, and the relatively posterior
probabilities of the various acoustic model parameters a are very sensitive to the corresponding values of J(a).
In such a situation, there is a finite number of optimal points âðkÞ, for k ¼ 1; . . . ;K , that satisfy

J â
ðkÞ

� �
¼ min

a2SðaÞ
JðaÞ ¼ ŝ2. (17)

Model updating problems in such situations can be classified as identifiable cases [15,16]. When the number
N is not large and/or the location of measurement station is not informative, it is possible for model updating
problems to fall into the unidentifiable cases [21,23]. It must be pointed out that the treatments of model
updating problems in unidentifiable cases are much more complex than those in the identification cases. This
paper focuses only on acoustic model updating problems under the identifiable catalog.

In the identifiable cases, the posterior PDF of the model parameters a in Eq. (15) can be asymptotically
approximated [15,16] as

p ajDN ;MPð Þ �
XK

k¼1

wkN â
ðkÞ;A�1N â

kð Þ
� �� �

, (18)

where Nðl;RÞ denotes a multivariate Gaussian distribution with mean l and covariance matrix R, ANðaÞ is the
Hessian of the function gðaÞ ¼ NJ ln JðaÞ, and wk is the weighting coefficients and is given by

wk ¼
w0kPk
k¼1w0k

where w0k ¼ p â
kð Þ

� �
AN â

kð Þ
� ���� ����1=2. (19)

Eq. (18) implies that the posterior PDF of the acoustic model parameters a can be approximated as a finite
weighted sum of Gaussian distributions that is centered at the optimal points â kð Þ, for k ¼ 1; . . . ;K . It must be
pointed out that the task of finding all global minima of the non-convex function J(a) in Eq. (14c) is non-
trivial. Katafygiotis and Beck [16] presented an algorithm for identifiable cases that finds all output-equivalent
optimal parameters once one of them is given. The posterior PDF of the predicted interior sound pressure at
any point can be approximated by the method that is presented in Ref. [22]. Unlike the deterministic
approach, which aims at pin-pointing a solution, the probabilistic approach calculates the posterior PDF of
the uncertain parameters and the predicted responses of the system. In this paper, the most commonly used
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deterministic method, the least error square method [25], is used to demonstrate the difference between the
probabilistic and deterministic approaches in the system identification of the acoustic model and the
reconstruction of the interior sound pressure of a room.

3. Numerical simulations

A rectangular enclosed room that is subjected to a uniform random sound pressure is used as a
verification example (see Fig. 1). The dimensions of the room are 2.5m� 5m� 6m, and the thicknesses
of all walls are equal to 10 cm. Two square leakages with sizes 0.25m � 0.25m and 0.2m � 0.2m
are located at the coordinates (2.1m, 2.52m, �2.5m) and (3m, 1.92m, �2.5m) of the room, respectively,
as shown in Fig. 1. The system is assumed to be classically damped with a damping ratio of x ¼ 0:01 in the
simulation. Only the lowest 6 acoustic modes are considered. The lowest and highest non-zero resonant
frequencies are 34.3 and 66.7Hz, respectively. The frequency range of the external sound pressure is from 20
to 80Hz. Measurement noise is simulated by adding a 5% white noise to the calculated time-domain
responses. A simulation of 0.8 s is used in the identification process with a time step of 0.0125 s. A non-
informative (uniform) prior distribution p is employed in the calculation of the normalized PDF in the
following three cases (see Fig. 1).

1. Case I: 2 square leakages are considered in this case. The uncertain parameter vector a ¼

x1; y1;x2; y2;L
0
x1
;L0x2

n o
consists of the leakage locations (x1, y1, and x2, y2) and sizes (L0x1

¼ L0y1 and

L0x2
¼ L0y2 ). The 2 internal sound pressure measurement stations are located at (1m, 4.3m, 1.75m) and

(3.5m, 1.2m, 0.5m). One external sound measurement is used for the identification process. This case is
used for the comparison between the proposed probabilistic method and the least error square deterministic
method.

2. Case II: This is the same as Case I except that the two internal sound pressure measurement stations are
located at (2.5m, 3m, 1.75m) and (2.5m, 3m, 0.5m). This case allows for studying the effect of
measurement locations on the results of system identification.

3. Case III: This is the same as Case I except that the number of the acoustic modes used in the analysis is
smaller than that in the simulation. This case allows for the studying of modeling error.

3.1. Case I: comparison of the proposed and least error square methods

First, Case I is considered. The square of the normalized prediction error is plotted against different leakage
locations in Fig. 2a. The square of the prediction error is normalized such that the maximum value is equal to
unity. Fig. 2b shows the 36 leakage locations that are considered in Fig. 2a on the surface z ¼ �Lz. It is
assumed that both leakages are located on this surface. In Fig. 2a, there are many local peaks, at which the
prediction errors are very similar to each other and are all very close to the global minimum. In such a
situation, it is very easy for the numerical optimization algorithm to be trapped at the regions of local
minimum. That is, optimizations with different initial trials will very likely to result in different solutions. By
following a deterministic approach, it is not possible to make any reasonable conclusions.

Fig. 2c shows the square of the prediction error as a function of the leakage sizes. The values of the
normalized prediction error square are almost the same at the region for the leakage 1 and 2 sizes that vary
from 2 to 8 cm. In fact, the prediction error for points on the dashed line in Fig. 2c are very close to the global
minimum. Note that the acoustic model is parameterized by more than two parameters (e.g., the x and y

coordinates of the first and second leakages, and the corresponding sizes); however, at most two parameters
can be pointed in one three-dimensional figure. In Figs. 2a and c, the parameters that are not shown in the
figure are at the corresponding optimal values.

Next, the proposed probabilistic method is employed in handling the same problem (Case I). Different
projections of the normalized PDF are show in Figs. 2d–f. Unlike Figs. 2a and c, there is only one sharp peak
in the domain of interest in Figs. 2d–f. Based on the results of Figs. 2d–f, it can be concluded that the region of
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Fig. 2. (a) Normalized prediction error square for different leakage locations (sizes of leakages 1 and 2 ¼ 0.025m� 0.025m and

0.02m� 0.02m), (b) leakage locations from 0 to 35 on the surface z ¼ �Lz, (c) normalized prediction error square for different leakage

sizes (leakage locations ¼ (3m, 1.6m, �2.5m) and (2.1m, 2.1m, �2.5m)), (d) normalized PDF vs. the location of air leakage 1,

(e) normalized PDF vs. the location of air leakage 2, (f) normalized PDF vs. the two leakage sizes.
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high probability concentrates in the neighborhoods of the optimal point

a ¼ x1; y1; x2; y2;L
0
x1
;L0x2

n o
¼ f2:090m; 2:508m; 2:985m; 1:902m; 2:506 cm; 2:004 cmg.

The true value is {2.1m, 2.52m, 3m, 1.92m, 2.5 cm, 2.0 cm}, which is slightly different from the identified
value due to the introduction of 5% measurement noise. From Figs. 2d–f, it can be observed that the PDF
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Fig. 3. (a) Original sound pressure distribution in dB scale, (b) reconstructed sound pressure distribution in dB scale.
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value decays rapidly in all directions away from the optimal point. This clearly shows that model updating in
Case I is identifiable based on the definition given in Ref. [23].

The interior sound pressure distribution at z ¼ 0 is reconstructed based on the identified acoustic model
using the proposed probabilistic method, and is plotted in Fig. 3b. The interior sound pressure is normalized
to ensure that the maximum value equals 0 dB. Fig. 3a shows the original sound pressure distribution at the
same location (z ¼ 0). By comparing Figs. 3a and b, it can be concluded that the original and re-constructed
sound pressure distributions are closely matched, because the identified acoustic model parameters are very
close to the true values.

3.2. Case II: effect of measurement locations

In Case II, the measurement stations are located at the nodal points of the (1,0), (0,1), and (1,1) acoustic
modes, which have significantly contribution to the overall sound pressure responses. Therefore, the measured
sound pressure that is employed in the identification process in this case is not as sensitive as that in Case I.
Different projections of the normalized PDF are summarized in Figs. 4a–c.

Considering Fig. 4c, a sharp peak can be identified as in Case I, showing that the leakage sizes in Case II is
still identifiable. However, when Fig. 4a is considered, the normalized PDF values for all points along the line
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Fig. 4. (a) Normalized PDF vs. the location of air leakage 1 (measurement stations located at the nodal points), (b) normalized PDF vs.

the location of air leakage 2 (measurement stations located at the nodal points), (c) normalized PDF vs. the two leakage sizes

(measurement stations located at the nodal points).
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y1 ¼ 2:503 within the domain of interest are exactly the same. In this case, the set of optimal points
corresponds to a straight line in the parameter space, and the posterior PDF of the parameters is concentrated
in the neighborhood of this line, instead of being concentrated in the neighborhood of a single point as in
Case I. A very similar observation can be made of Fig. 4b, in which the points of high normalized PDF value
are concentrated in the neighborhood of the line y2 ¼ 1:904. These show that the updating problem in Case II
is unidentifiable according to the definition given in Ref. [23]. This is the reason for using Eq. (15) instead of
(18) in the calculation of the normalized PDF in this case. Eq. (18) is valid only for identification cases. It must
be pointed out that the computational power and time required for using Eq. (18) is much lower than that for
Eq. (15). For model updating problems with more uncertain parameters, it is computationally prohibitive to
use Eq. (15). Several computationally efficient numerical algorithms for approximating the posterior PDF in
the general unidentifiable cases are available in Refs. [21,23]. The measurement stations should be set at non-
nodal points of the dominant modes to avoid unidentifiable model updating problems.

3.3. Case III: effect of modal truncation error

Case III, which consists of two parts, focuses on the effect of the modeling error of the prediction model.
The lowest 6 modes are employed in the simulation model while only 4 and 2 modes are considered in the
prediction models in Cases IIIa and IIIb, respectively.
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Fig. 5. (a) Normalized PDF vs. the location of air leakage 1 (4 modes used), (b) normalized PDF vs. the location of air leakage 2 (4 modes

used), (c) normalized PDF vs. the two leakage sizes (4 modes used).
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Firstly, only the lowest 4 acoustic modes are considered in the prediction model. These 4 modes have
dominant contributions to the overall sound pressure responses of the system. Figs. 5a–c show the projections
of the calculated normalized PDF within the domain of interest. A single peak can be identified in each of the
three figures, and the identified optimal point {2.095m, 2.517m, 3.002m, 1.911m, 2.488 cm, 1.988 cm} is close
to the true value.

In Fig. 5c, the decay of the PDF value away from the optimal point is slower than that in Fig. 2f (or the
peak in Fig. 5c is not as sharp as that in Fig. 2f). This implies that the uncertainty in Case IIIa is higher than
that in Case I.

Fig. 6 shows the reconstructed interior sound pressure distribution at z ¼ 0, which is slightly different from
that in Fig. 3a, especially around the center of the area. This occurs because only 4 modes are used in the
sound pressure reconstruction.

Finally, Case IIIb is performed, in which only the lowest 2 acoustic modes are employed in the prediction
model. The modeling error in this case is relatively large when compared to that in Case IIIa. Based on
Eq. (15), the normalized PDF is calculated and summarized in Figs. 7a–c. From Figs. 7a to b, it is clear that
the model updating problem in Case IIIb is unidentifiable. The situation is very similar to that in Case II.
Although a peak can be identified in Fig. 7c, the decay of the PDF value away from the optimal point is much
slower than that in Cases IIIa and I (see Fig. 6c and Fig. 2f). It can be concluded that the uncertainty
associated with the acoustic parameters a is much higher in this case than in Cases IIIa and I.

4. Conclusions

This paper puts forward a new methodology for the reconstruction of interior sound pressure from an
acoustic model, in which some model parameters are uncertain. The model considered is a rectangular room
with two air leakages, and the room is subjected to external random noise. To reconstruct the interior sound
pressure, the probabilistic system identification framework, which was originally used in structural model
updating and health monitoring, is used to obtain the posterior PDF of the set of uncertain acoustic model
parameters based on a given set of measured sound pressure. Unlike the least error square method (the most
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Fig. 6. Reconstructed sound pressure distribution in dB scale (4 modes used).

Y.Y. Lee et al. / Journal of Sound and Vibration 298 (2006) 877–891888



common deterministic approach), the proposed probabilistic methodology performs the parameter identi-
fication process based on the highest probability of the set of uncertain parameters. The numerical case studies
clearly show the superior performance of the proposed probabilistic methodology in the reconstruction of the
interior sound pressure.

As the number of the uncertain parameters involved in the acoustic model is small and the
number of measured data points available is usually large, this type of system identification problems
usually falls into the category of identifiable cases. The numerical case studies show that measurement
locations and modeling error have significant effects on the identifiability of the model updating problem. The
updating problem will become unidentifiable when the measurement stations are located at the nodal points of
the dominant acoustic modes. Enough modes should be considered in the prediction model to avoid
unidentifiable cases.
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Fig. 7. (a) Normalized PDF vs. the location of air leakage 1 (2 modes used), (b) normalized PDF vs. the location of air leakage 2 (2 modes

used), (c) normalized PDF vs. the two leakage sizes (2 modes used).
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Appendix A

In order to obtain the best model, the posterior PDF of the uncertain parameters p yjDN ;MPð Þ given by
Eq. (13) must be maximized. Consider the logarithm of Eq. (13):

ln p hjDN ;MPð Þ ¼ ln cþ ln p DN jh;MPð Þ þ ln pðhÞ. (A.1)

From Eq. (14a)

ln p DN jh;MPð Þ ¼ �
NNo

2
lnð2pÞ �NNo ln s�

1

2s2
XN

n¼1

q̂ðnÞ � qðn; aÞ
�� ��2. (A.2)

For a given a, maximizing p DN jh;MPð Þ with respect to s requires q ln p DN jy;MPð Þ=qs ¼ 0. If follows:

ŝ2ðaÞ ¼
1

NNo

XN

n¼1

q̂ðnÞ � qðn; aÞ
�� ��2. (A.3)

This shows how the most probable variance ŝ2ðaÞ, for given a, depends on the choice of the model
parameters a. Substituting Eq. (A.3) into Eq. (A.2) yields

ln p DN ja; ŝ
2
ðaÞ;MP

	 

¼ �

NNo

2
lnð2pÞ �NNo ln ŝðaÞ �

NNo

2
. (A.4)

It follows that p hjDN ;MPð Þ is maximized when ŝðaÞ is minimized. Thus the most probable model
parameters a are given by minimizing the measure-of-fit function

JðaÞ ¼
1

NNO

XN

n¼1

q̂ðnÞ � qðn; aÞ
�� ��2 ¼ ŝ2ðaÞ. (A.5)
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